Topological analysis of polymeric melts: chain-length effects and fast-converging estimators for entanglement length.
نویسندگان
چکیده
Primitive path analyses of entanglements are performed over a wide range of chain lengths for both bead spring and atomistic polyethylene polymer melts. Estimators for the entanglement length N_{e} which operate on results for a single chain length N are shown to produce systematic O(1/N) errors. The mathematical roots of these errors are identified as (a) treating chain ends as entanglements and (b) neglecting non-Gaussian corrections to chain and primitive path dimensions. The prefactors for the O(1/N) errors may be large; in general their magnitude depends both on the polymer model and the method used to obtain primitive paths. We propose, derive, and test new estimators which eliminate these systematic errors using information obtainable from the variation in entanglement characteristics with chain length. The new estimators produce accurate results for N_{e} from marginally entangled systems. Formulas based on direct enumeration of entanglements appear to converge faster and are simpler to apply.
منابع مشابه
Stress relaxation in entangled polymer melts.
We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the m...
متن کاملCounting polymer knots to find the entanglement length
Uncrossability of polymer chains in a melt gives rise to a restricted transverse motion of chains, which is represented by a confining ‘‘tube’’. Ultimately, the tube must be of topological origin. We propose two definitions of the tube diameter or entanglement length (Ne) in terms of the properties of topologically equilibrated melts of rings: (1) the probability of a ring in such a melt being ...
متن کاملRouse Mode Analysis of Chain Relaxation in Homopolymer Melts
We use molecular dynamics simulations of the Kremer-Grest (KG) bead-spring model of polymer chains of length between 10 and 500, and a closely related analogue that allows for chain crossing, to clearly delineate the effects of entanglements on the length-scale-dependent chain relaxation in polymer melts. We analyze the resulting trajectories using the Rouse modes of the chains and find that en...
متن کاملReptational dynamics in dissipative particle dynamics simulations of polymer melts.
Understanding the fundamental properties of polymeric liquids remains a challenge in materials science and soft matter physics. Here, we present a simple and computationally efficient criterion for topological constraints, i.e., uncrossability of chains, in polymeric liquids using the dissipative particle dynamics (DPD) method. No new length scales or forces are added. To demonstrate that this ...
متن کاملOn two intrinsic length scales in polymer physics : topological constraints vs . entanglement length
– The interplay of topological constraints, excluded volume interactions, persistence length and dynamical entanglement length in solutions and melts of linear chains and ring polymers is investigated by means of kinetic Monte Carlo simulations of a three dimensional lattice model. In unknotted and unconcatenated rings, topological constraints manifest themselves in the static properties above ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 80 3 Pt 1 شماره
صفحات -
تاریخ انتشار 2009